產(chǎn)品編號(hào) | bs-14618R-BF555 |
英文名稱(chēng) | Rabbit Anti-Simian Rotavirus VP8/BF555 Conjugated antibody |
中文名稱(chēng) | BF555標(biāo)記的辛諾柏病毒糖VP8抗體 |
別 名 | Simian Rotavirus VP8/VP4; Simian Rotavirus VP8 + VP4; Outer capsid protein VP8; Hemagglutinin; VP4_ROTSS; Outer Capsid protein VP4 (Hemagglutinin); Outer capsid protein VP4; RVA s4gp1; RVAs4gp1; VP4; Outer capsid protein VP4; Outer capsid protein VP8*; Simian Rotavirus VP8*. |
規(guī)格價(jià)格 | 100ul/2980元 購(gòu)買(mǎi) 大包裝/詢(xún)價(jià) |
說(shuō) 明 書(shū) | 100ul |
研究領(lǐng)域 | 細(xì)胞生物 細(xì)菌及病毒 |
抗體來(lái)源 | Rabbit |
克隆類(lèi)型 | Polyclonal |
交叉反應(yīng) | |
產(chǎn)品應(yīng)用 | ICC=1:50-200 IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 26/87kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from Simian Rotavirus VP8 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲(chǔ) 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: Simian Rotavirus VP4 (Outer Capsid protein VP4) (Hemagglutinin) functions as a spike-forming protein that mediates virion attachment to the host epithelial cell receptors and plays a major role in cell penetration, determination of host range restriction and virulence. Rotavirus entry into the host cell probably involves multiple sequential contacts between the outer capsid proteins VP4 and VP7, and the cell receptors. According to the considered strain, VP4 seems to essentially target sialic acid and/or the integrin heterodimer ITGA2/ITGB1. VP4 is a homotrimer and adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside the capsid layer. The priming trypsin cleavage triggers its rearrangement into rigid spikes with approximate two-fold symmetry of their protruding parts. After an unknown second triggering event, cleaved VP4 may undergo another rearrangement, in which two VP5* subunits fold back on themselves and join a third subunit to form a tightly associated trimer, shaped like a folded umbrella. VP4 interacts with host ITGA2 (via ITAG2 I-domain); this interaction occurs when ITGA2 is part of the integrin heterodimer ITGA2/ITGB1. VP4 interacts with host integrin heterodimer TGA4/ITGB1 and ITGA4/ITGB7. Proteolytic cleavage by trypsin results in activation of VP4 functions and greatly increases infectivity. The penetration into the host cell is dependent on trypsin treatment of VP4. It produces two peptides, VP5* and VP8* that remain associated with the virion. Function: Spike-forming protein that mediates virion attachment to the host epithelial cell receptors and plays a major role in cell penetration, determination of host range restriction and virulence. Rotavirus entry into the host cell probably involves multiple sequential contacts between the outer capsid proteins VP4 and VP7, and the cell receptors. According to the considered strain, VP4 seems to essentially target sialic acid and/or the integrin heterodimer ITGA2/ITGB1 (By similarity). Outer capsid protein VP5*: forms the spike 'foot' and 'body'. Acts as a membrane permeabilization protein that mediates release of viral particles from endosomal compartments into the cytoplasm. In integrin-dependent strains, VP5* targets the integrin heterodimer ITGA2/ITGB1 for cell attachment (By similarity). VP8* forms the head of the spikes. It is the viral hemagglutinin and an important target of neutralizing antibodies. In sialic acid-dependent strains, VP8* binds to host cell sialic acid, most probably a ganglioside, providing the initial contact. Subunit: VP4 is a homotrimer (Potential). VP4 adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside the capsid layer. Only hints of the third molecule are observed above the capsid surface. It probably performs a series of molecular rearrangements during viral entry. Prior to trypsin cleavage, it is flexible. The priming trypsin cleavage triggers its rearrangement into rigid spikes with approximate two-fold symmetry of their protruding parts. After an unknown second triggering event, cleaved VP4 may undergo another rearrangement, in which two VP5* subunits fold back on themselves and join a third subunit to form a tightly associated trimer, shaped like a folded umbrella. VP5* is a homotrimer (Potential). The trimer is coiled-coil stabilized by its C-terminus, however, its N-terminus, known as antigen domain or 'body', seems to be flexible allowing it to self-associate either as a dimer or a trimer. The two- to three-fold reorganization and fold-back of VP5* may be linked to membrane penetration, by exposing its hydrophobic region. Interacts with host ITGA2 (via ITAG2 I-domain); this interaction occurs when ITGA2 is part of the integrin heterodimer ITGA2/ITGB1. Interacts with host integrin heterodimer ITGA4/ITGB1 and ITGA4/ITGB7. Subcellular Location: Outer capsid protein VP4: Virion. Host rough endoplasmic reticulum (Potential). Note=Immature double-layered particles assembled in the cytoplasm bud across the membrane of the endoplasmic reticulum, acquiring during this process a transient lipid membrane that is modified with the ER resident viral glycoproteins NSP4 and VP7; these enveloped particles also contain VP4. As the particles move towards the interior of the ER cisternae, the transient lipid membrane and the non-structural protein NSP4 are lost, while the virus surface proteins VP4 and VP7 rearrange to form the outermost virus protein layer, yielding mature infectious triple-layered particles. Outer capsid protein VP8*: Virion. Note=Outer capsid protein. Outer capsid protein VP5*: Virion. Note=Outer capsid protein. Post-translational modifications: Proteolytic cleavage by trypsin results in activation of VP4 functions and greatly increases infectivity. The penetration into the host cell is dependent on trypsin treatment of VP4. It produces two peptides, VP5* and VP8* that remain associated with the virion. Similarity: Belongs to the rotavirus VP4 family. Database links: Entrez Gene: 7011406 ROTSS SwissProt: P12473 ROTSS
Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
| 91无码精品秘 入口网站 | 国产91欧美成人A片男男 | 东北女人被狂躁A片 | 熟妇少妇任你躁91 | 国产软件无套内射视频 | 国产丨熟女丨国产熟√ | 一级国产免费av片 | 日韩,欧美,一道本电影中文 | 温泉近親入浴相姦中文 | 亚洲无码久久久久 | 日韩av在线免费观看 | 国产精品老熟女视频一区二区 | 在线观看你懂的高潮 | 午夜大尺度色无码专区 | 久久久久久久久久久久久久动漫 | 又粗又猛又黄又爽无遮挡 | 无码免费TV在线视频 | 无码人妻一区二区免费 | 台湾中文佬娱乐官网 | 男人女人爱爱视频网站 | 日韩精品一区二区三区四区五区 | 亚洲成人精品无码 | 寡妇高潮一级毛片免费看小说 | 国产成人无码一区二区三区 | 日韩 av 抽插 蜜桃 | 国产精品伦子伦露脸 | 国产喷白浆一区二区三区动漫 | 蜜桃av鲁一鲁一鲁一鲁 | 国产成人av一区二区三区在线 | 丰满人妻熟女aⅴ中文字幕 又大又粗又爽18禁免费看 | 亚洲精品久久久口爆吞精 | 国产又黄又大又粗的视频 | 18禁无庶挡国产拉尿91 | 一线大片久久久久久久久久久久久久久18 | 中文字幕av在线播放 | 97人妻无码视频一区二区三区 | 色情乱婬A片无码天堂影院男组长 | 国产69精品久久久久久 | 国产99精品视频 | ThePorn.无码专区 |