產(chǎn)品編號(hào) | bs-16472R-BF647 |
英文名稱(chēng) | Rabbit Anti-Hepatitis C Virus 1b Core protein p19/BF647 Conjugated antibody |
中文名稱(chēng) | BF647標(biāo)記的丙型肝炎病毒1b抗體 |
別 名 | Core protein p19; HCV core antigen; HCV core protein; Hepatitis C Virus core protein; polyprotein [Hepatitis C virus subtype 1b]. |
規(guī)格價(jià)格 | 100ul/2980元 購(gòu)買(mǎi) 大包裝/詢(xún)價(jià) |
說(shuō) 明 書(shū) | 100ul |
研究領(lǐng)域 | 細(xì)胞生物 細(xì)菌及病毒 |
抗體來(lái)源 | Rabbit |
克隆類(lèi)型 | Polyclonal |
交叉反應(yīng) | |
產(chǎn)品應(yīng)用 | ICC=1:50-200 IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 7.6/21kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from human Hepatitis C Virus 1b Core protein p19 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲(chǔ) 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: Core protein packages viral RNA to form a viral nucleocapsid, and promotes virion budding. Modulates viral translation initiation by interacting with HCV IRES and 40S ribosomal subunit. Also regulates many host cellular functions such as signaling pathways and apoptosis. Prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) and IFN-gamma signaling pathways and by inducing human STAT1 degradation. Plays an important role in virus-mediated cell transformation leading to hepatocellular carcinomas. Interacts with, and activates STAT3 leading to cellular transformation. May repress the promoter of p53, and sequester CREB3 and SP110 isoform3/Sp110b in the cytoplasm. Also represses cell cycle negative regulating factor CDKN1A, thereby interrupting an important check point of normal cell cycle regulation. Targets transcription factors involved in the regulation of inflammatory responses and in the immune response: suppresses NK-kappaB activation, and activates AP-1. Mediates apoptotic pathways throught association with TNF-type receptors TNFRSF1A and LTBR, although its effect on death receptors-induced apoptosis remains controvertial. Enhances TRAIL mediated apoptosis, suggesting that it might play a role in mediated apoptosis, suggesting that it might play a role in immune-mediated liver cell injury. Secreted core protein is able to bind C1QR1 at the T-cell surface, resulting in down-regulation of T-lymphocytes proliferation. May transactivate human MYC, Rous sarcoma virus LTR, and SV40 promoters. May suppress the human FOS and HIV-1 LTR activity. May alter lipid metabolism by interacting with hepatocellular proteins involved in lipid accumulation and storage. Function: Core protein packages viral RNA to form a viral nucleocapsid, and promotes virion budding. Modulates viral translation initiation by interacting with HCV IRES and 40S ribosomal subunit. Also regulates many host cellular functions such as signaling pathways and apoptosis. Prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) and IFN-gamma signaling pathways and by inducing human STAT1 degradation. Thought to play a role in virus-mediated cell transformation leading to hepatocellular carcinomas. Interacts with, and activates STAT3 leading to cellular transformation. May repress the promoter of p53, and sequester CREB3 and SP110 isoform 3/Sp110b in the cytoplasm. Also represses cell cycle negative regulating factor CDKN1A, thereby interrupting an important check point of normal cell cycle regulation. Targets transcription factors involved in the regulation of inflammatory responses and in the immune response: suppresses NK-kappaB activation, and activates AP-1. Could mediate apoptotic pathways through association with TNF-type receptors TNFRSF1A and LTBR, although its effect on death receptor-induced apoptosis remains controversial. Enhances TRAIL mediated apoptosis, suggesting that it might play a role in immune-mediated liver cell injury. Seric core protein is able to bind C1QR1 at the T-cell surface, resulting in down-regulation of T-lymphocytes proliferation. May transactivate human MYC, Rous sarcoma virus LTR, and SV40 promoters. May suppress the human FOS and HIV-1 LTR activity. Alters lipid metabolism by interacting with hepatocellular proteins involved in lipid accumulation and storage. Core protein induces up-regulation of FAS promoter activity, and thereby probably contributes to the increased triglyceride accumulation in hepatocytes (steatosis). Subunit: Core protein is a homomultimer that binds the C-terminal part of E1 and interacts with numerous cellular proteins. Interaction with human STAT1 SH2 domain seems to result in decreased STAT1 phosphorylation, leading to decreased IFN-stimulated gene transcription. In addition to blocking the formation of phosphorylated STAT1, the core protein also promotes ubiquitin-mediated proteasome-dependent degradation of STAT1. Interacts with, and constitutively activates human STAT3. Associates with human LTBR and TNFRSF1A receptors and possibly induces apoptosis. Binds to human SP110 isoform 3/Sp110b, HNRPK, C1QR1, YWHAE, UBE3A/E6AP, DDX3X, APOA2 and RXRA proteins. Interacts with human CREB3 nuclear transcription protein, triggering cell transformation. May interact with human p53. Also binds human cytokeratins KRT8, KRT18, KRT19 and VIM (vimentin). E1 and E2 glycoproteins form a heterodimer that binds to human LDLR, CLDN1, CD81 and SCARB1 receptors. E2 binds and inhibits human EIF2AK2/PKR. Also binds human CD209/DC-SIGN and CLEC4M/DC-SIGNR. p7 forms a homoheptamer in vitro. NS2 forms a homodimer containing a pair of composite active sites at the dimerization interface. NS2 seems to interact with all other non-structural (NS) proteins. NS4A interacts with NS3 serine protease and stabilizes its folding. NS3-NS4A complex is essential for the activation of the latter and allows membrane anchorage of NS3. NS3 interacts with human TANK-binding kinase TBK1 and MAVS. NS4B and NS5A form homodimers and seem to interact with all other non-structural (NS) proteins. NS5A also interacts with human EIF2AK2/PKR, FKBP8, GRB2, BIN1, PIK3R1, SRCAP, VAPB and with most Src-family kinases. NS5B is a homooligomer and interacts with human VAPB, HNRNPA1 and SEPT6. Subcellular Location: Core protein p21: Host endoplasmic reticulum membrane; Single-pass membrane protein. Host mitochondrion membrane; Single-pass type I membrane protein. Host lipid droplet. Note=The C-terminal transmembrane domain of core protein p21 contains an ER signal leading the nascent polyprotein to the ER membrane. Only a minor proportion of core protein is present in the nucleus and an unknown proportion is secreted. Core protein p19: Virion. Host cytoplasm. Host nucleus. Secreted. Post-translational modifications: Specific enzymatic cleavages in vivo yield mature proteins. The structural proteins, core, E1, E2 and p7 are produced by proteolytic processing by host signal peptidases. The core protein is synthesized as a 21 kDa precursor which is retained in the ER membrane through the hydrophobic signal peptide. Cleavage by the signal peptidase releases the 19 kDa mature core protein. The other proteins (p7, NS2-3, NS3, NS4A, NS4B, NS5A and NS5B) are cleaved by the viral proteases. Envelope E1 and E2 glycoproteins are highly N-glycosylated. Core protein is phosphorylated by host PKC and PKA. NS5A is phosphorylated in a basal form termed p56. p58 is an hyperphosphorylated form of p56. p56 and p58 coexist in the cell in roughly equivalent amounts. Hyperphosphorylation is dependent on the presence of NS4A. Human AKT1, RPS6KB1/p70S6K, MAP2K1/MEK1, MAP2K6/MKK6 and CSNK1A1/CKI-alpha kinases may be responsible for NS5A phosphorylation. NS4B is palmitoylated. This modification may play a role in its polymerization or in protein-protein interactions. The N-terminus of a fraction of NS4B molecules seems to be relocated post-translationally from the cytoplasm to the ER lumen, with a 5th transmembrane segment. The C-terminus of NS2 may be lumenal with a fourth transmembrane segment. Core protein is ubiquitinated; mediated by UBE3A and leading to core protein subsequent proteasomal degradation. Similarity: Contains 1 peptidase C18 domain. Contains 1 peptidase S29 domain. Contains 1 RdRp catalytic domain. Database links: Entrez Gene: 951475 Hepatitis C Virus genotype 1b SwissProt: P26662 Hepatitis C Virus genotype 1b SwissProt: P26663 Hepatitis C Virus genotype 1b SwissProt: Q9WMX2 Hepatitis C Virus genotype 1b Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
| 国产原创成人视频网站 | 稀缺小u女呦品呦视频 | 国产性一乱一性一伧下载 | 99久久无码国产精品性出奶 | 日韩一级片内射视频 | 一区二区污污网站在线观看 | 精品人妻一区二区三区四区色欲 | A片 XXXX受爽| 一级黄色片三级黄色 | 免费在线观看黄片视频 | 精品aⅴ无码中文字字幕蜜桃91 | 熟女久久精品一区蜜桃 | 麻豆柠檬视频在线播放 | 人体窝窝7777777粗大野 | 国产精品久久久久久一级毛片 | 精品无码免费人侵犯AV | 国产一级a毛一级a看… | 最好看的2018免费观看在线 | 国产乱国产乱老熟300部视频 | 91亚洲精品一区二区三 | 黄片儿高清无码免费观看 | 国产高潮抽搐喷白浆午夜 | 少妇被c 黄 在线网站 | 精品成人A片久久久久久 | 国产一级A片免费视频 | 夜精品无码A片一区二区蜜桃 | 12孩岁女精品A片BBB | 精品久久久久久久久久久久无码免费 | 开心婷婷五月色蜜桃在线 | 男女免费爱爱好爽动态图 | 免费一级A片国产在线观看 强草后入激情演绎在线观看 | 国产45页在线视频 | 深圳妇女搡BBBB搡BBBB | 大学生依人在线视频精品 | 中文字幕人妻在线视频 | 成人一区二区三中文破解版新视 | 国产精品视频免费观看 | 无码精品少妇一区二区三区久久 | 成人 国产 免费观看爱豆传媒 | 亚洲一区二区三区动漫 |