產品編號 | bs-15502R-APC |
英文名稱 | Rabbit Anti-RGS14 /APC Conjugated antibody |
中文名稱 | APC標記的G蛋白信號調節(jié)因子14抗體 |
別 名 | Highly similar to rap1/rap2 interacting protein; OTTHUMP00000223586; OTTHUMP00000223587; Regulation of G protein signaling 14; Regulator of G protein signaling 14; Regulator of G protein signalling 14; Regulator of G-protein signaling 14; RGS 14; RGS14; RGS14_HUMAN. |
規(guī)格價格 | 100ul/2980元 購買 大包裝/詢價 |
說 明 書 | 100ul |
研究領域 | 信號轉導 G蛋白偶聯受體 G蛋白信號 |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應 | (predicted: Human, Mouse, Rat, Cow, ) |
產品應用 | ICC=1:50-200 IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 61kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from human RGS14 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產品介紹 |
background: This gene encodes a member of the regulator of G-protein signaling family. This protein contains one RGS domain, two Raf-like Ras-binding domains (RBDs), and one GoLoco domain. The protein attenuates the signaling activity of G-proteins by binding, through its GoLoco domain, to specific types of activated, GTP-bound G alpha subunits. Acting as a GTPase activating protein (GAP), the protein increases the rate of conversion of the GTP to GDP. This hydrolysis allows the G alpha subunits to bind G beta/gamma subunit heterodimers, forming inactive G-protein heterotrimers, thereby terminating the signal. Alternate transcriptional splice variants of this gene have been observed but have not been thoroughly characterized. [provided by RefSeq, Jul 2008]. Function: Acts as a regulator of G protein signaling (RGS). Modulates G protein alpha subunits nucleotide exchange and hydrolysis activities by functioning either as a GTPase-activating protein (GAP), thereby driving G protein alpha subunits into their inactive GDP-bound form, or as a GDP-dissociation inhibitor (GDI). Confers GDI activity on G(i) alpha subunits GNAI1 and GNAI3, but not G(o) alpha subunit GNAO1 and G(i) alpha subunit GNAI2. Confers GAP activity on G(o) alpha subunit GNAI0 and G(i) alpha subunits GNAI2 and GNAI3. May act as a scaffold integrating G protein and Ras/Raf MAPkinase signaling pathways. Inhibits platelet-derived growth factor (PDGF)-stimulated ERK1/ERK2 phosphorylation; a process depending on its interaction with HRAS1 and that is reversed by G(i) alpha subunit GNAI1. Acts as a positive modulator of microtubule polymerisation and spindle organization through a G(i)-alpha-dependent mechanism. Plays a role in cell division. Probably required for the nerve growth factor (NGF)-mediated neurite outgrowth. May be involved in visual memory processing capacity and hippocampal-based learning and memory. Subunit: Interacts with GNAO1 and GNAI2. Interacts (via RGS and GoLoco domains) GNAI1; the interaction occurs in the centrosomes. Interacts with RABGEF1; the interactions is GTP-dependent. Interacts with RAP2A; the interactions is GTP-dependent and does not alter its function on G(i) alpha subunits either as GAP or as GDI. Associates with microtubules. Found in a complex with at least BRAF, HRAS1, MAP2K1, MAPK3 and RGS14. Interacts with RIC8A (via C-terminus). Interacts (via RBD 1 domain) with HRAS1 (active GTP-bound form preferentially). Interacts (via RBD domains) with BRAF (via N-terminus); the interaction mediates the formation of a ternary complex with RAF1. Interacts (via RBD domains) with RAF1 (via N-terminus); the interaction mediates the formation of a ternary complex with BRAF. Interacts with KRAS (active GTP-bound form preferentially), MRAS (active GTP-bound form preferentially), NRAS (active GTP-bound form preferentially) and RRAS (active GTP-bound form preferentially). Interacts with GNAI1 (via active GTP-or inactive GDP-bound forms); the interaction prevents association of RGS14 with centrosomes or nuclear localization. Interacts with GNAI2. Interacts with GNAI3 (via active GTP- or inactive GDP-bound forms); the interaction prevents association of RGS14 with centrosomes or nuclear localization (By similarity). Associates with microtubules. Subcellular Location: Nucleus (By similarity). Nucleus, PML body (By similarity). Cytoplasm. Membrane (By similarity). Cell membrane (By similarity). Cytoplasm, cytoskeleton, centrosome (By similarity). Cytoplasm, cytoskeleton, spindle. Cytoplasm, cytoskeleton, spindle pole (By similarity). Cell projection, dendrite (By similarity). Cell projection, dendritic spine (By similarity). Cell junction, synapse, postsynaptic cell membrane, postsynaptic density (By similarity). Note=Associates with the perinuclear sheaths of microtubules (MTs) surrounding the pronuclei, prior to segregating to the anastral mitotic apparatus and subsequently the barrel-shaped cytoplasmic bridge between the nascent nuclei of the emerging 2-cell embryo. Localizes to a perinuclear compartment near the microtubule-organizing center (MTOC). Expressed in the nucleus during interphase and segregates to the centrosomes and astral MTs during mitosis. Relocalizes to the nucleus in PML nuclear bodies in response to heat stress. Colocalizes with RIC8A in CA2 hippocampal neurons. Localizes to spindle poles during metaphase. Shuttles between the nucleus and cytoplasm in a CRM1-dependent manner. Recruited from the cytosol to the plasma membrane by the inactive GDP-bound forms of G(i) alpha subunits GNAI1 and GNAI3. Recruited from the cytosol to membranes by the active GTP-bound form of HRAS1. Colocalizes with G(i) alpha subunit GNAI1 and RIC8A at the plasma membrane. Colocalizes with BRAF and RAF1 in both the cytoplasm and membranes (By similarity). Post-translational modifications: Phosphorylated by PKC. Phosphorylation is increased in presence of forskolin and may enhance the GDI activity on G(i) alpha subunit GNAI1 (By similarity). Similarity: Contains 1 GoLoco domain. Contains 2 RBD (Ras-binding) domains. Contains 1 RGS domain. Database links: Entrez Gene: 10636 Human Entrez Gene: 51791 Mouse Omim: 602513 Human SwissProt: O43566 Human SwissProt: P97492 Mouse Unigene: 9347 Human Unigene: 1426 Mouse Unigene: 9795 Rat Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
1、抗體溶解方法 | |
2、抗體修復方式 | |
3、常用試劑的配制 | |
4、免疫組化操作步驟 | |
5、免疫組化問題解答 | |
6、Western Blotting 操作步驟 | |
7、Western Blotting 問題解答 | |
8、關于肽鏈的設計 | |
9、多肽的溶解與保存 | |
10、酶標抗體效價測定程序 | |
| 国产伦子伦露脸免费视频 | 日韩精品一区在线播放 | 国产91无套粉嫩白浆 | 中文字幕人妻一区二区在线视频 | 夜夜躁狠狠躁日日躁 | 白咲碧绝顶高潮潮喷失禁 | 少妇性BBB搡BBB爽爽爽欧美 | 成人污污www网站免费丝瓜 | 人人操人人妻人人爱人人人DVD | www黄色视频在线观看 | 国产无遮挡裸体美女视频 | 国产精品秘 麻豆人口 | 免费av网站在线观看 | 国产精品久久久久久五月天加勒比 | 亚欧精品视频一区二区三区 | 亚洲自偷拍精喷四虎 | 搡六十70老女人老熟女视频 | 中文字幕一区二区在线观看 | 狠狠色婷婷久久综合频道日韩小说 | 嫩草AV久久伊人妇女超级a | 亚洲AV免费在线观看 | 国产精品扒开腿做爽爽爽视频 | 91精品无码久久久久久久 | 中文字幕无码在线 | 亚洲高清无码网站 | 国产熟妇婬乱一区二区三区 | 国产精品美女操逼 | 人人澡人人妻丰满熟妇 | 国产99在线观看 | 91国内精品久久久久精 | 一级毛片免费看高清经典小说 | 亚洲AV成人午夜无码精品久久 | 无码在线免费视频 | 成人毛片18女人毛片免费看电影 | 成人无码视频在线看 | 精品人妻一区二区三区密桃 | 岳伦一级A片免费观看 | 欧美毛多多复古老A片 | 国产熟女真实乱精品视频 | 婷婷开心激情综合五月天 |