產品編號 | bs-3449R-BF488 |
英文名稱 | Rabbit Anti-Phospho-Tie2 (Tyr992)/BF488 Conjugated antibody |
中文名稱 | BF488標記的磷酸化血管生成素受體2抗體 |
別 名 | Tie-2; Tie2; Tek; Angiopoietin-1 receptor; Tyrosine-protein kinase receptor TIE-2; hTIE2; Tyrosine-protein kinase receptor TEK; Tunica interna endothelial cell kinase; p140 TEK; Angiopoietin 1 receptor; CD202b; CD202b antigen; Endothelial tyrosine kinase; Endothelium specific receptor tyrosine kinase 2; hTIE 2; Hyk; Soluble TIE2 variant 1; Soluble TIE2 variant 2; tek tyrosine kinase; TEK tyrosine kinase endothelial; tek tyrosine kinase, endothelial; TIE 2; TIE2_HUMAN; Tunica interna endothelial cell kinase; Tyrosine kinase with Ig and EGF homology domains 2; Tyrosine protein kinase receptor TEK; Tyrosine protein kinase receptor TIE 2; Tyrosine-protein kinase receptor TIE-2; Venous malformations multiple cutaneous and mucosal; VMCM 1; VMCM; VMCM1; CD202b. |
規(guī)格價格 | 100ul/2980元 購買 大包裝/詢價 |
說 明 書 | 100ul |
產品類型 | 磷酸化抗體 |
研究領域 | 腫瘤 心血管 信號轉導 干細胞 生長因子和激素 激酶和磷酸酶 |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應 | Human, (predicted: Mouse, Rat, Chicken, Dog, Pig, Cow, Horse, Rabbit, Sheep, ) |
產品應用 | IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 124kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated Synthesised phosphopeptide derived from human Tie2 around the phosphorylation site of Tyr992 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產品介紹 |
background: The TEK receptor tyrosine kinase is expressed almost exclusively in endothelial cells in mice, rats, and humans. This receptor possesses a unique extracellular domain containing 2 immunoglobulin-like loops separated by 3 epidermal growth factor-like repeats that are connected to 3 fibronectin type III-like repeats. The ligand for the receptor is angiopoietin-1. Defects in TEK are associated with inherited venous malformations; the TEK signaling pathway appears to be critical for endothelial cell-smooth muscle cell communication in venous morphogenesis.TEK is closely related to the TIE receptor tyrosine kinase. Function: Tyrosine-protein kinase that acts as cell-surface receptor for ANGPT1, ANGPT2 and ANGPT4 and regulates angiogenesis, endothelial cell survival, proliferation, migration, adhesion and cell spreading, reorganization of the actin cytoskeleton, but also maintenance of vascular quiescence. Has anti-inflammatory effects by preventing the leakage of proinflammatory plasma proteins and leukocytes from blood vessels. Required for normal angiogenesis and heart development during embryogenesis. Required for post-natal hematopoiesis. After birth, activates or inhibits angiogenesis, depending on the context. Inhibits angiogenesis and promotes vascular stability in quiescent vessels, where endothelial cells have tight contacts. In quiescent vessels, ANGPT1 oligomers recruit TEK to cell-cell contacts, forming complexes with TEK molecules from adjoining cells, and this leads to preferential activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascades. In migrating endothelial cells that lack cell-cell adhesions, ANGT1 recruits TEK to contacts with the extracellular matrix, leading to the formation of focal adhesion complexes, activation of PTK2/FAK and of the downstream kinases MAPK1/ERK2 and MAPK3/ERK1, and ultimately to the stimulation of sprouting angiogenesis. ANGPT1 signaling triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Signaling is modulated by ANGPT2 that has lower affinity for TEK, can promote TEK autophosphorylation in the absence of ANGPT1, but inhibits ANGPT1-mediated signaling by competing for the same binding site. Signaling is also modulated by formation of heterodimers with TIE1, and by proteolytic processing that gives rise to a soluble TEK extracellular domain. The soluble extracellular domain modulates signaling by functioning as decoy receptor for angiopoietins. TEK phosphorylates DOK2, GRB7, GRB14, PIK3R1; SHC1 and TIE1. Subunit: Tyrosine-protein kinase that acts as cell-surface receptor for ANGPT1, ANGPT2 and ANGPT4 and regulates angiogenesis, endothelial cell survival, proliferation, migration, adhesion and cell spreading, reorganization of the actin cytoskeleton, but also maintenance of vascular quiescence. Has anti-inflammatory effects by preventing the leakage of proinflammatory plasma proteins and leukocytes from blood vessels. Required for normal angiogenesis and heart development during embryogenesis. Required for post-natal hematopoiesis. After birth, activates or inhibits angiogenesis, depending on the context. Inhibits angiogenesis and promotes vascular stability in quiescent vessels, where endothelial cells have tight contacts. In quiescent vessels, ANGPT1 oligomers recruit TEK to cell-cell contacts, forming complexes with TEK molecules from adjoining cells, and this leads to preferential activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascades. In migrating endothelial cells that lack cell-cell adhesions, ANGT1 recruits TEK to contacts with the extracellular matrix, leading to the formation of focal adhesion complexes, activation of PTK2/FAK and of the downstream kinases MAPK1/ERK2 and MAPK3/ERK1, and ultimately to the stimulation of sprouting angiogenesis. ANGPT1 signaling triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Signaling is modulated by ANGPT2 that has lower affinity for TEK, can promote TEK autophosphorylation in the absence of ANGPT1, but inhibits ANGPT1-mediated signaling by competing for the same binding site. Signaling is also modulated by formation of heterodimers with TIE1, and by proteolytic processing that gives rise to a soluble TEK extracellular domain. The soluble extracellular domain modulates signaling by functioning as decoy receptor for angiopoietins. TEK phosphorylates DOK2, GRB7, GRB14, PIK3R1; SHC1 and TIE1. Subcellular Location: Cell membrane; Single-pass type I membrane protein. Cell junction. Cell junction, focal adhesion. Cytoplasm, cytoskeleton. Secreted. Tissue Specificity: Detected in umbilical vein endothelial cells. Proteolytic processing gives rise to a soluble extracellular domain that is detected in blood plasma (at protein level). Predominantly expressed in endothelial cells and their progenitors, the angioblasts. Has been directly found in placenta and lung, with a lower level in umbilical vein endothelial cells, brain and kidney. Post-translational modifications: Proteolytic processing leads to the shedding of the extracellular domain (soluble TIE-2 alias sTIE-2). Autophosphorylated on tyrosine residues in response to ligand binding. Autophosphorylation occurs in trans, i.e. one subunit of the dimeric receptor phosphorylates tyrosine residues on the other subunit. Autophosphorylation occurs in a sequential manner, where Tyr-992 in the kinase activation loop is phosphorylated first, followed by autophosphorylation at Tyr-1108 and at additional tyrosine residues. ANGPT1-induced phosphorylation is impaired during hypoxia, due to increased expression of ANGPT2. Phosphorylation is important for interaction with GRB14, PIK3R1 and PTPN11. Phosphorylation at Tyr-1102 is important for interaction with SHC1, GRB2 and GRB7. Phosphorylation at Tyr-1108 is important for interaction with DOK2 and for coupling to downstream signal transduction pathways in endothelial cells. Dephosphorylated by PTPRB. Ubiquitinated. The phosphorylated receptor is ubiquitinated and internalized, leading to its degradation. DISEASE: Defects in TEK are a cause of dominantly inherited venous malformations (VMCM) [MIM:600195]; an error of vascular morphogenesis characterized by dilated, serpiginous channels. Note=May play a role in a range of diseases with a vascular component, including neovascularization of tumors, psoriasis and inflammation. Similarity: Belongs to the protein kinase superfamily. Tyr protein kinase family. Tie subfamily. Contains 3 EGF-like domains. Contains 3 fibronectin type-III domains. Contains 2 Ig-like C2-type (immunoglobulin-like)domains. Contains 1 protein kinase domain. Database links: Entrez Gene: 7010 Human Entrez Gene: 21687 Mouse Omim: 600221 Human SwissProt: Q02763 Human SwissProt: Q02858 Mouse Unigene: 89640 Human Unigene: 14313 Mouse Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. Tie2 是血管內皮特異性的酪氨酸激酶型受體, 主要表達在肺血管內皮以及卵泡、創(chuàng)口肉芽組織等血管內皮. 在血管發(fā)育中起重要的調節(jié)作用. |
1、抗體溶解方法 | |
2、抗體修復方式 | |
3、常用試劑的配制 | |
4、免疫組化操作步驟 | |
5、免疫組化問題解答 | |
6、Western Blotting 操作步驟 | |
7、Western Blotting 問題解答 | |
8、關于肽鏈的設計 | |
9、多肽的溶解與保存 | |
10、酶標抗體效價測定程序 | |
| 精品国产1区2区3区 富婆一区二区三区91 | 欧美精品欧美极品欧美激情 | 欧美人猛做受xxxx3 | 骚家教老师奶水真多 | 狠狠色婷婷久久综合频道日韩小说 | 国产伦子伦视频在线观看 | 亚洲国产精品久久久 | 美女自慰白浆免费看 | 久久久无码喷水日本动漫一区二区 | 少妇特黄A一区二区三区 | 中文字幕一区二区三区伦理影院 | 久久久久无码人妻一区二区三区 | 在线观看欧美黄无码 | 精品秘 一区二三区免费雷安胖子 | 国产精品久久久久久一级毛片许晴 | 水蜜桃精品在线观看 | 日本一级婬片A片AAA毛多多 | 高潮失禁潮喷大喷水av | 西西美女裸体视频久久 | 亚洲 激情 图片 小说 伦 | 免费A级毛片在线播放不收费换脸 | 波多野结衣亚洲色 | 亚洲AV秘 无码聂小雨 | 国产裸体美女永久免费无遮拦 | 免费 无码 国产真人视频九色 | 久久久国产精品 色婷婷 | 国产老女人乱婬免费 | 黄色视频在线观看网址 | 日韩免费一级无码婬片AA片软件 | 美女搡BBB又爽又猛又黄www | 国产一级a毛一级a毛视频在线网站 | AV成人网站亚洲一二区 | 蜜桃无码超碰三级网 | 少妇人妻一区二区三区 | 精品久久欧美熟妇www | 少妇无码精品23p | 81人妻精品无码视频 | 精品码产区一区二视频 | 麻豆视频剧情短片在线观看 | 国产伦精品一区二区三区视频黑人 |